Effect of Substituent on Titanocene/MMAO Catalyst for Ethylene/1-Hexene Copolymerization

نویسندگان

  • M. Wannaborworn
  • B. Jongsomjit
چکیده

Copolymerization of ethylene with 1-hexene was carried out using two ansa-fluorenyl titanium derivative complexes. The substituent effect on the catalytic activity, monomer reactivity ratio and polymer property was investigated. It was found that the presence of t-Bu groups on fluorenyl ring exhibited remarkable catalytic activity and produced polymer with high molecular weight. However, these catalysts produce polymer with narrow molecular weight distribution, indicating the characteristic of single-site metallocene catalyst. Based on C NMR, we can observe that monomer reactivity ratio was affected by catalyst structure. The rH values of complex 2 were lower than that of complex 1 which might be result from the higher steric hindrance leading to a reduction of 1hexene insertion step. Keywords—Constrained geometry catalyst, linear low density polyethylene, copolymerization, reactivity ratio

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imido-modified SiO2-supported Ti/Mg Ziegler-Natta catalysts for ethylene polymerization and ethylene/1-hexene copolymerization

A novel imido-modified SiO2-supported Ti/Mg Ziegler-Natta catalyst for ethylene and ethylene/1-hexene polymerization is investigated. The catalyst is prepared by modification of (SiO2/MgO/MgCl2)TiClx Ziegler-Natta catalysts via supporting vanadium species followed by reaction with p-tolyl isocyanate as imido agents, to get the merits from both the SiO2-supported imido vanadium catalyst and the ...

متن کامل

Catalytic activity during copolymerization of ethylene and 1-hexene via mixed TiO2/SiO2-supported MAO with rac-Et[Ind]2ZrCl2 metallocene catalyst.

Activities during ethylene/1-hexene copolymerization were found to increase using the mixed titania/silica-supported MAO with rac-Et[Ind]2ZrCl2 metallocene catalyst. Energy Dispersive X-ray spectorcopy (EDX) indicated that the titania was apparently located on the outer surface of silica and acted as a spacer to anchor MAO to the silica surface. IR spectra revealed the Si-O-Ti stretching at 980...

متن کامل

Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-)Polymerization

A series of novel half-titanocene complexes CpTiCl2[S-2-R-6-(PPh2)C6H3] (Cp = C5H5, 2a, R = H; 2b, R = Ph; 2c, R = SiMe3) have been synthesized by treating CpTiCl3 with the sodium of the ligands, 2-R-6-(PPh2)C6H3SNa, which were prepared by the corresponding ligands and NaH. These complexes have been characterized by H, C and P NMR as well as elemental analyses. Structures for 2a–b were further ...

متن کامل

Effects of Ti/Mg molar ratio on bi-supported SiO2/MgCl2 (ethoxide type)/TiCl4 catalysts in ethylene homopolymerization and ethylene/1-hexene copolymerization

SiO2/MgCl2 (ethoxide type)/TiCl4 Ziegler-Natta catalysts for use in ethylene polymerization and ethylene/1-hexene copolymerization have been prepared using silica with a supported layer of magnesium ethoxide (Mg(OEt)2) as a catalyst precursor, followed by treating with TiCl4 at different Ti/Mg molar ratios, which showed significant effects on the active centers and pore structures of the cataly...

متن کامل

Active site nature of magnesium dichloride-supported titanocene catalysts in olefin polymerization

Heterogeneous Ziegler-Natta and homogeneous metallocene catalysts exhibit greatly different active sitenature in olefin polymerization. In our previous study, it was reported that MgCl2-supported titanocenecatalysts can generate both Ziegler-Natta-type and metallocene-type active sites according to the type of activators.The dual active site nature of the supported titanocene catalysts was furt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012